Send to

Choose Destination
See comment in PubMed Commons below
J Neuroimmune Pharmacol. 2014 Mar;9(2):259-68. doi: 10.1007/s11481-013-9509-x. Epub 2013 Nov 19.

Platelet-derived growth factor-BB restores HIV Tat -mediated impairment of neurogenesis: role of GSK-3β/β-catenin.

Author information

Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.


Our previous study demonstrated that platelet-derived growth factor-BB (PDGF-BB) increased the cell proliferation of primary rat neuronal progenitor cells (NPCs). However, whether PDGF-BB regulates neurogenesis in HIV-associated neurological disorder (HAND) remains largely unknown. In this study we demonstrated that pre-treatment of NPCs with PDGF-BB restored Tat-mediated impairment of cell proliferation via activation of p38 and JNK MAPK pathways. Moreover, treatment with PDGF-BB induced inactivation of glycogen synthase kinase-3β (GSK-3β), evidenced by its phosphorylation at Ser9, this effect was significantly inhibited by the p38 and JNK inhibitors. Level of nuclear β-catenin, the primary substrate of GSK-3β, was also concomitantly increased following PDGF-BB treatment, suggesting that PDGF-BB stimulates NPC proliferation via acting on GSK-3β to promote nuclear accumulation of β-catenin. This was further validated by gain and loss of function studies using cells transfected with either the wild type or mutant GSK-3β constructs. Together these data underpin the role of GSK-3β/β-catenin as a novel target that regulates NPC proliferation mediated by PDGF-BB with implications for therapeutic intervention for reversal of impaired neurogenesis inflicted by Tat.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Support Center