Format

Send to

Choose Destination
Cancer Res. 2014 Jan 1;74(1):387-97. doi: 10.1158/0008-5472.CAN-13-2488. Epub 2013 Nov 18.

Proteogenomic analysis reveals unanticipated adaptations of colorectal tumor cells to deficiencies in DNA mismatch repair.

Author information

1
Authors' Affiliations: Departments of Biochemistry, Biomedical Informatics, Surgery, Cancer Biology, and Biostatistics; and Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt University School of Medicine, Nashville, Tennessee.

Abstract

A growing body of genomic data on human cancers poses the critical question of how genomic variations translate to cancer phenotypes. We used standardized shotgun proteomics and targeted protein quantitation platforms to analyze a panel of 10 colon cancer cell lines differing by mutations in DNA mismatch repair (MMR) genes. In addition, we performed transcriptome sequencing (RNA-seq) to enable detection of protein sequence variants from the proteomic data. Biologic replicate cultures yielded highly consistent proteomic inventories with a cumulative total of 6,513 protein groups with a protein false discovery rate of 3.17% across all cell lines. Networks of coexpressed proteins with differential expression based on MMR status revealed impact on protein folding, turnover and transport, on cellular metabolism and on DNA and RNA synthesis and repair. Analysis of variant amino acid sequences suggested higher stability of proteins affected by naturally occurring germline polymorphisms than of proteins affected by somatic protein sequence changes. The data provide evidence for multisystem adaptation to MMR deficiency with a stress response that targets misfolded proteins for degradation through the ubiquitin-dependent proteasome pathway. Enrichment analysis suggested epithelial-to-mesenchymal transition in RKO cells, as evidenced by increased mobility and invasion properties compared with SW480. The observed proteomic profiles demonstrate previously unknown consequences of altered DNA repair and provide an expanded basis for mechanistic interpretation of MMR phenotypes.

PMID:
24247723
PMCID:
PMC3896054
DOI:
10.1158/0008-5472.CAN-13-2488
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center