Format

Send to

Choose Destination
PLoS One. 2013 Nov 11;8(11):e79636. doi: 10.1371/journal.pone.0079636. eCollection 2013.

Hypoxia-induced changes in the bioactivity of cytotrophoblast-derived exosomes.

Author information

1
Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Brisbane, Australia.

Abstract

Migration of extravillous trophoblasts (EVT) into decidua and myometrium is a critical process in the conversion of maternal spiral arterioles and establishing placenta perfusion. EVT migration is affected by cell-to-cell communication and oxygen tension. While the release of exosomes from placental cells has been identified as a significant pathway in materno-fetal communication, the role of placental-derived exosomes in placentation has yet to be established. The aim of this study was to establish the effect of oxygen tension on the release and bioactivity of cytotrophoblast (CT)-derived exosomes on EVT invasion and proliferation. CT were isolated from first trimester fetal tissue (n = 12) using a trypsin-deoxyribonuclease-dispase/Percoll method. CT were cultured under 8%, 3% or 1% O2 for 48 h. Exosomes from CT-conditioned media were isolated by differential and buoyant density centrifugation. The effect of oxygen tension on exosome release (µg exosomal protein/10(6)cells/48 h) and bioactivity were established. HTR-8/SVneo (EVT) were used as target cells to establish the effect (bioactivity) of exosomes on invasion and proliferation as assessed by real-time, live-cell imaging (Incucyte™). The release and bioactivity of CT-derived exosomes were inversely correlated with oxygen tension (p<0.001). Under low oxygen tensions (i.e. 1% O2), CT-derived exosomes promoted EVT invasion and proliferation. Proteomic analysis of exosomes identified oxygen-dependent changes in protein content. We propose that in response to changes in oxygen tension, CTs modify the bioactivity of exosomes, thereby, regulating EVT phenotype. Exosomal induction of EVT migration may represent a normal process of placentation and/or an adaptive response to placental hypoxia.

PMID:
24244532
PMCID:
PMC3823597
DOI:
10.1371/journal.pone.0079636
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center