Format

Send to

Choose Destination
Environ Microbiol. 2014 Jun;16(6):1695-708. doi: 10.1111/1462-2920.12325. Epub 2013 Dec 12.

Halomonas sulfidaeris-dominated microbial community inhabits a 1.8 km-deep subsurface Cambrian Sandstone reservoir.

Author information

1
Energy Biosciences Institute, University of Illinois Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA; Institute for Genomic Biology, University of Illinois Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA; Department of Geology, University of Illinois Urbana-Champaign, 1301 W. Green Street, Urbana, IL, 61801, USA.

Abstract

A low-diversity microbial community, dominated by the γ-proteobacterium Halomonas sulfidaeris, was detected in samples of warm saline formation porewater collected from the Cambrian Mt. Simon Sandstone in the Illinois Basin of the North American Midcontinent (1.8 km/5872 ft burial depth, 50°C, pH 8, 181 bars pressure). These highly porous and permeable quartz arenite sandstones are directly analogous to reservoirs around the world targeted for large-scale hydrocarbon extraction, as well as subsurface gas and carbon storage. A new downhole low-contamination subsurface sampling probe was used to collect in situ formation water samples for microbial environmental metagenomic analyses. Multiple lines of evidence suggest that this H. sulfidaeris-dominated subsurface microbial community is indigenous and not derived from drilling mud microbial contamination. Data to support this includes V1-V3 pyrosequencing of formation water and drilling mud, as well as comparison with previously published microbial analyses of drilling muds in other sites. Metabolic pathway reconstruction, constrained by the geology, geochemistry and present-day environmental conditions of the Mt. Simon Sandstone, implies that H. sulfidaeris-dominated subsurface microbial community may utilize iron and nitrogen metabolisms and extensively recycle indigenous nutrients and substrates. The presence of aromatic compound metabolic pathways suggests this microbial community can readily adapt to and survive subsurface hydrocarbon migration.

PMID:
24238218
DOI:
10.1111/1462-2920.12325
[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Secondary source IDs

Publication types

MeSH terms

Substances

Secondary source IDs

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center