Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2013 Nov 13;8(11):e79141. doi: 10.1371/journal.pone.0079141. eCollection 2013.

Reduced nasal nitric oxide production in cystic fibrosis patients with elevated systemic inflammation markers.

Author information

Department of Paediatrics, Jena University Hospital, Jena, Germany.



Nitric oxide (NO) is produced within the respiratory tract and can be detected in exhaled bronchial and nasal air. The concentration varies in specific diseases, being elevated in patients with asthma and bronchiectasis, but decreased in primary ciliary dyskinesia. In cystic fibrosis (CF), conflicting data exist on NO levels, which are reported unexplained as either decreased or normal. Functionally, NO production in the paranasal sinuses is considered as a location-specific first-line defence mechanism. The aim of this study was to investigate the correlation between upper and lower airway NO levels and blood inflammatory parameters, CF-pathogen colonisation, and clinical data.


Nasal and bronchial NO concentrations from 57 CF patients were determined using an electrochemical analyser and correlated to pathogen colonisation of the upper and lower airways which were microbiologically assessed from nasal lavage and sputum samples. Statistical analyses were performed with respect to clinical parameters (lung function, BMI), laboratory findings (CRP, leucocytes, total-IgG, fibrinogen), and anti-inflammatory and antibiotic therapy. There were significant correlations between nasal and bronchial NO levels (rho = 0.48, p<0.001), but no correlation between NO levels and specific pathogen colonisation. In patients receiving azithromycin, significantly reduced bronchial NO and a tendency to reduced nasal NO could be found. Interestingly, a significant inverse correlation of nasal NO to CRP (rho = -0.28, p = 0.04) and to leucocytes (rho = -0.41, p = 0.003) was observed. In contrast, bronchial NO levels showed no correlation to clinical or inflammatory parameters.


Given that NO in the paranasal sinuses is part of the first-line defence mechanism against pathogens, our finding of reduced nasal NO in CF patients with elevated systemic inflammatory markers indicates impaired upper airway defence. This may facilitate further pathogen acquisition in the sinonasal area, with consequences for lung colonisation and the overall outcome in CF.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center