Send to

Choose Destination
Planta. 1986 Mar;169(1):97-107. doi: 10.1007/BF01369780.

L-Phenylalanine ammonia-lyase fromPhaseolus vulgaris: Modulation of the levels of active enzyme bytrans-cinnamic acid.

Author information

Department of Biochemistry, Royal Holloway and Bedford New College, University of London, Egham Hill, TW20 OEX, Egham, Surrey, UK.


The extractable activity ofL-phenylalanine ammonia-lyase (PAL; EC in cell suspension cultures of bean (Phaseolus vulgaris) is greatly induced following exposure to an elicitor preparation from the cell walls of the phytopathogenic fungusColletotrichum lindemuthianum. Following exogenous application oftrans-cinnamic acid (the product of the PAL reaction) to elicitor-induced cells, the activity of the enzyme rapidly declines. Loss of enzyme activity is accompanied by inhibition of the rate of synthesis of PAL subunits, as determined by [(35)S]methionine pulse-labelling followed by specific immunoprecipitation; this is insufficient to account for the rapid loss of PAL enzyme activity. Pulse-chase and immune blotting experiments indicate that cinnamic acid does not affect the rate of degradation of enzyme subunits, but rather mediates inactivation of the enzyme. A non-dialysable factor from cinnamicacid-treated bean cells stimulates removal of PAL activity from enzyme extracts in vitro; this effect is dependent on the presence of cinnamic acid. Such loss of enzyme activity in vitro is accompanied by an apparent loss or reduction of the dehydroalanine residue of the enzyme's active site, as detected by active-site-specific tritiation, although levels of immunoprecipitable enzyme subunits do not decrease. Furthermore, cinnamic-acid-mediated loss of enzyme activity in vivo is accompanied, in pulse-chase experiments, by a greater relative loss of(35)S-labelled enzyme subunits precipitated by an immobilised active-site affinity ligand than of subunits precipitated with anti-immunoglobulin G. It is therefore suggested that a possible mechanism for cinnamic-acid-mediated removal of PAL activity may involve modification of the dehydroalanine residue of the enzyme's active site.


Supplemental Content

Loading ...
Support Center