Format

Send to

Choose Destination
Sci Rep. 2013 Nov 14;3:3217. doi: 10.1038/srep03217.

The medaka mutation tintachina sheds light on the evolution of V-ATPase B subunits in vertebrates.

Author information

1
1] Centre for Organismal Studies, COS, University of Heidelberg, Heidelberg, Germany [2].

Abstract

Vacuolar-type H(+) ATPases (V-ATPases) are multimeric protein complexes that play a universal role in the acidification of intracellular compartments in eukaryotic cells. We have isolated the recessive medaka mutation tintachina (tch), which carries an inactivating modification of the conserved glycine residue (G75R) of the proton pump subunit atp6v1Ba/vatB1. Mutant embryos show penetrant pigmentation defects, massive brain apoptosis and lethality before hatching. Strikingly, an equivalent mutation in atp6v1B1 (G78R) has been reported in a family of patients suffering from distal renal tubular acidosis (dRTA), a hereditary disease that causes metabolic acidosis due to impaired kidney function. This poses the question as to how molecularly identical mutations result in markedly different phenotypes in two vertebrate species. Our work offers an explanation for this phenomenon. We propose that, after successive rounds of whole-genome duplication, the emergence of paralogous copies allowed the divergence of the atp6v1B cis-regulatory control in different vertebrate groups.

PMID:
24225653
PMCID:
PMC3827601
DOI:
10.1038/srep03217
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center