Format

Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2014 Feb;42(3):1593-605. doi: 10.1093/nar/gkt1090. Epub 2013 Nov 8.

Redox-active quinones induces genome-wide DNA methylation changes by an iron-mediated and Tet-dependent mechanism.

Author information

1
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.

Abstract

DNA methylation has been proven to be a critical epigenetic mark important for various cellular processes. Here, we report that redox-active quinones, a ubiquitous class of chemicals found in natural products, cancer therapeutics and environment, stimulate the conversion of 5 mC to 5 hmC in vivo, and increase 5 hmC in 5751 genes in cells. 5 hmC increase is associated with significantly altered gene expression of 3414 genes. Interestingly, in quinone-treated cells, labile iron-sensitive protein ferritin light chain showed a significant increase at both mRNA and protein levels indicating a role of iron regulation in stimulating Tet-mediated 5 mC oxidation. Consistently, the deprivation of cellular labile iron using specific chelator blocked the 5 hmC increase, and a delivery of labile iron increased the 5 hmC level. Moreover, both Tet1/Tet2 knockout and dimethyloxalylglycine-induced Tet inhibition diminished the 5 hmC increase. These results suggest an iron-regulated Tet-dependent DNA demethylation mechanism mediated by redox-active biomolecules.

PMID:
24214992
PMCID:
PMC3919571
DOI:
10.1093/nar/gkt1090
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center