Format

Send to

Choose Destination
See comment in PubMed Commons below
Occup Environ Med. 2014 Feb;71(2):141-6. doi: 10.1136/oemed-2013-101665. Epub 2013 Nov 8.

Modelling complex mixtures in epidemiologic analysis: additive versus relative measures for differential effectiveness.

Author information

1
Section of Environment and Radiation, International Agency for Research on Cancer, Lyon, France.

Abstract

OBJECTIVES:

Mixed exposures are often combined into single exposure measures using weighting factors. This occurs for many complex mixtures in environmental and occupational epidemiology including multiple congeners, air pollutants and unique forms of ionising radiation, among others.

METHODS:

The weights used for combining exposures are most often determined from experimental animal and cellular research. However, evidence from observational research is necessary to support their use in risk analyses, since results from experimental research do not directly translate to observational epidemiology.

RESULTS:

Using simulated data, we show that ratio-based relative weights cannot be reliably estimated from observational research. As a solution to this problem, we propose an approach for estimating differences in effectiveness of distinct exposures based on their excess effectiveness compared with a reference exposure.

CONCLUSIONS:

This alternative is easy to calculate and provides reliable estimates of differences in effectiveness of distinct exposures. This is important to regulatory bodies using relative measures for policy decisions, as well as practicing epidemiologists conducting risk analyses.

PMID:
24213566
DOI:
10.1136/oemed-2013-101665
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center