Format

Send to

Choose Destination
J Ethnopharmacol. 2013 Dec 12;150(3):1154-62. doi: 10.1016/j.jep.2013.10.055. Epub 2013 Nov 7.

Anti-inflammatory and antitumoural effects of Uncaria guianensis bark.

Author information

1
Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A, Venezuela.

Abstract

ETHNOPHARMACOLOGICAL RELEVANCE:

Uncaria guianensis (Aublet) Gmell (Rubiaceae) is a medicinal plant from the jungles of South and Central America, used to treat cancer, arthritis, diabetes, and inflammation. Evaluate the anti-inflammatory and anti-tumor effects of Uncaria guianensis preparations.

MATERIALS AND METHODS:

Bio-guided fractionation of a hydroethanolic extract of Uncaria guianensis was performed, evaluating the fractions and subfractions for their effect on inflammatory mediators, tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and prostaglandin E2 (PGE2) by ELISA and nitric oxide (NO) by the Griess reaction in cultured supernatant from RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS). The expression of cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS) and inhibitor of κB (IκB) were investigated in RAW 264.7 macrophages by flow cytometry. The activity of NF-κB in HeLa cells transfected with a luciferase reporter system was determined. The effect of Uncaria guianensis on the inflammatory response in vivo was assessed in BALB/c mice stimulated with LPS, on rat paw oedema induced by carrageenan, and on tumour growth and lung metastasis in BALB/c mice inoculated with 4T1 mammary tumour cells. Immune cell infiltrates and inflammatory mediators were evaluated in the tumour by immunohistochemistry.

RESULTS:

Sub-fraction Ug AIV inhibited, to varying degrees, NO, TNF-α, IL-6 and PGE2 production by macrophages in vitro (30 μg/ml) and in the serum of LPS-challenged mice (5 mg/kg). Macrophage expression of Cox-2 was inhibited (35%), IκB degradation was completely inhibited and NF-κB activation was inhibited (70%) by Ug AIV at 30 μg/ml. Ug AIV decreased paw oedema by 86% (5 mg/kg) and serum NO and TNF-α by 45% and 65% respectively. Ug AIV reduced 4T1 mammary tumour growth by 91% on day 33 post-inoculation as well as the levels of serum NO, IL-6 and TNF-α in the same animals. Ug AIV decreased the number of tumour-infiltrating T lymphocytes, macrophages and neutrophils as well as the number of cells positive for COX-2, iNOS, IL-6, TNF-α and p65.

CONCLUSIONS:

As Ug AIV was not cytotoxic for tumour cells or macrophages, its anti-tumour effect may be due to a reduction in pro-tumoural inflammatory processes in the tumour microenvironment, possibly mediated through NF-κB.

KEYWORDS:

COX-2; IL; Il-6; IκB; LPS; NF-κB; NO; PGE(2); TNF-α; cyclooxygenase 2; iNOS; inducible nitric oxide synthase; inhibitor of κB; interleukin; lipopolysaccharide; nitric oxide; prostaglandin E(2); tumour necrosis factor alpha

PMID:
24212077
DOI:
10.1016/j.jep.2013.10.055
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center