Send to

Choose Destination
J Comp Neurol. 1986 Mar 8;245(2):137-59.

Laminar and cellular localization of cytochrome oxidase in the cat striate cortex.


Cytochrome oxidase (C.O.) was histochemically localized in the cat striate cortex at the light and electron microscopic levels. The results indicate that the oxidative metabolic activity within the cat striate cortex may vary between (1) different laminae, (2) neurons and glia, (3) different neuron types, (4) dendrite and soma of the same cell, (5) different types of dendrites, (6) different segments of the same dendrite, and (7) different classes of symmetric and asymmetric axon terminals. Maximal laminar C.O. staining was localized within geniculoreceptive layer IV. Darkly reactive neurons include the large (presumed corticotectal) pyramids of layer V, and various classes of large and medium-sized presumed GABAergic nonpyramidal cells sparsely distributed throughout layers II-VI. The small and medium-sized pyramids of layers II, III, V, and VI, as well as many of the smaller presumed GABAergic neurons, were only lightly or moderately reactive. The darkly reactive neurons tended to be those that received convergent or proximally localized asymmetric axosomatic synapses, implying that they are strongly driven by excitatory synaptic input. The darkly reactive nonpyramids resembled those that form GAD+, symmetric axosomatic synapses with pyramidal cells. The dark reactivity of the symmetric synaptic terminals indicates that they mediate strong inhibition of neuronal discharge. The dark reactivity of a class of large asymmetric terminals in layer IV is likely to represent highly active geniculocortical terminals. The predominant distribution of elevated C.O. reactivity in dendrites is correlated with reported sites of (1) convergent excitatory synaptic input, (2) maximal field potentials, (3) highly active ion transport, and (4) Na+, K+-ATPase.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center