Format

Send to

Choose Destination
PLoS Genet. 2013 Oct;9(10):e1003934. doi: 10.1371/journal.pgen.1003934. Epub 2013 Oct 31.

The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like cells.

Author information

1
Université de Nice Sophia Antipolis, iBV, UMR 7277, Nice, France ; Inserm, iBV, U1091, Nice, France ; CNRS, iBV, UMR 7277, Nice, France.

Abstract

Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can regenerate and convert into insulin-producing β-like cells through the ectopic expression of a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing approaches, we show that the selective inhibition of the Arx gene in α-cells is sufficient to promote the conversion of adult α-cells into β-like cells at any age. Interestingly, this conversion induces the continuous mobilization of duct-lining precursor cells to adopt an endocrine cell fate, the glucagon(+) cells thereby generated being subsequently converted into β-like cells upon Arx inhibition. Of interest, through the generation and analysis of Arx and Pax4 conditional double-mutants, we provide evidence that Pax4 is dispensable for these regeneration processes, indicating that Arx represents the main trigger of α-cell-mediated β-like cell neogenesis. Importantly, the loss of Arx in α-cells is sufficient to regenerate a functional β-cell mass and thereby reverse diabetes following toxin-induced β-cell depletion. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes.

PMID:
24204325
PMCID:
PMC3814322
DOI:
10.1371/journal.pgen.1003934
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center