Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS Comput Biol. 2013 Oct;9(10):e1003304. doi: 10.1371/journal.pcbi.1003304. Epub 2013 Oct 24.

Emergence of metastable state dynamics in interconnected cortical networks with propagation delays.

Author information

1
Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America ; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.

Abstract

The importance of the large number of thin-diameter and unmyelinated axons that connect different cortical areas is unknown. The pronounced propagation delays in these axons may prevent synchronization of cortical networks and therefore hinder efficient information integration and processing. Yet, such global information integration across cortical areas is vital for higher cognitive function. We hypothesized that delays in communication between cortical areas can disrupt synchronization and therefore enhance the set of activity trajectories and computations interconnected networks can perform. To evaluate this hypothesis, we studied the effect of long-range cortical projections with propagation delays in interconnected large-scale cortical networks that exhibited spontaneous rhythmic activity. Long-range connections with delays caused the emergence of metastable, spatio-temporally distinct activity states between which the networks spontaneously transitioned. Interestingly, the observed activity patterns correspond to macroscopic network dynamics such as globally synchronized activity, propagating wave fronts, and spiral waves that have been previously observed in neurophysiological recordings from humans and animal models. Transient perturbations with simulated transcranial alternating current stimulation (tACS) confirmed the multistability of the interconnected networks by switching the networks between these metastable states. Our model thus proposes that slower long-range connections enrich the landscape of activity states and represent a parsimonious mechanism for the emergence of multistability in cortical networks. These results further provide a mechanistic link between the known deficits in connectivity and cortical state dynamics in neuropsychiatric illnesses such as schizophrenia and autism, as well as suggest non-invasive brain stimulation as an effective treatment for these illnesses.

PMID:
24204238
PMCID:
PMC3812055
DOI:
10.1371/journal.pcbi.1003304
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center