Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Genet Genomics. 2014 Feb;289(1):25-36. doi: 10.1007/s00438-013-0786-0. Epub 2013 Nov 8.

Evolution, functional divergence and conserved exon-intron structure of bHLH/PAS gene family.

Author information

1
Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, People's Republic of China.

Abstract

bHLH/PAS genes encode a family of basic helix-loop-helix (bHLH) transcription factors with bHLH, PAS and PAS_3 domain. bHLH/PAS genes are involved in many essential physiological and developmental processes, such as hypoxic response neural development, the circadian clock, and learning ability. Despite their important functions, the origin and evolution of this bHLH/PAS gene family has yet to be elucidated. In this study, we aim to explore the origin, evolution, gene structure conservation of this gene family and provide a model to analyze the evolution of other gene families. Our results show that genes of the bHLH/PAS family only exist in metazoans. They may have originated from the common ancestor of metazoans and expanded into vertebrates. We identified bHLH/PAS genes in more than ten species representing the main lineages and constructed the phylogenetic trees (Beyasian, ML and NJ) to classify them into three groups. The exon-intron structure analysis revealed that a relatively conserved "1001-0210" eight-exon structure exists in most groups and lineages. In addition, we found the exon fusion pattern in several groups in this conserved eight-exon structure. Further analysis indicated that bHLH/PAS protein paralogs evolved from several gene duplication events followed by functional divergence and purifying selection. We presented a phylogenetic model to describe the evolutionary history of the exon structures of bHLH/PAS genes. Taken together, our study revealed the evolutionary model, functional divergence and gene structure conservation of bHLH/PAS genes. These findings provide clues for the functional and evolutionary mechanism of bHLH/PAS genes.

PMID:
24202550
DOI:
10.1007/s00438-013-0786-0
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center