Format

Send to

Choose Destination
Planta. 1989 Aug;179(1):89-96. doi: 10.1007/BF00395775.

Stamens and gibberellin in the regulation of corolla pigmentation and growth in Petunia hybrida.

Author information

1
Department of Horticulture, Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel.

Abstract

Removal of stamens, or even of only the anthers, at an early stage of corolla development, before the start of main anthocyanin production, inhibited both growth and pigmentation of attached corollas of Petunia. When only one or two stamens were removed from one side, the inhibition was restricted to the corolla side adjacent to the detached stamens. Application of gibberellic acid (GA3) substituted for the stamens in its effect on both growth and pigmentation. In detached corollas, isolated at the early-green stage and grown in vitro in sucrose medium, GA3 promoted growth and was essential for anthocyanin synthesis. A marked enhancement of anthocyanin production was observed 48 h before the increase in corolla growth rate. Corollas detached at later stages were able to continue their growth and pigmentation in sucrose without GA3. When Paclobutrazol (β-[(4-chlorophenyl)-ethyl]-α(1,1-dimethylethyl)-H-1,2,4-triazol-1-ethanol), an inhibitor of gibberellin biosynthesis, was added to the growth medium of in-vitro-grown corollas, pigmentation was inhibited but there was no effect on corolla growth. Low levels of GA3 counteracted the Paclobutrazol effect on pigmentation but did not affect growth. The above results indicate that the effect of GA3 (and probably that of the stamens) on corolla growth is independent of its effect on pigmentation. Gibberellic acid and paclobutrazol had no effect on [(14)C]sucrose uptake by in-vitro-grown corollas. The activity of phenylalanine ammonialyase was correlated with the effect of stamens and GA3 on pigmentation in corollas grown in vivo and in vitro.

PMID:
24201426
DOI:
10.1007/BF00395775

Supplemental Content

Loading ...
Support Center