Format

Send to

Choose Destination
J Med Chem. 2013 Dec 12;56(23):9586-600. doi: 10.1021/jm4010835. Epub 2013 Nov 20.

Reductions in log P improved protein binding and clearance predictions enabling the prospective design of cannabinoid receptor (CB1) antagonists with desired pharmacokinetic properties.

Author information

1
Research and Development, Bristol-Myers Squibb, Co. , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.

Abstract

Several strategies have been employed to reduce the long in vivo half-life of our lead CB1 antagonist, triazolopyridazinone 3, to differentiate the pharmacokinetic profile versus the lead clinical compounds. An in vitro and in vivo clearance data set revealed a lack of correlation; however, when compounds with <5% free fraction were excluded, a more predictable correlation was observed. Compounds with log P between 3 and 4 were likely to have significant free fraction, so we designed compounds in this range to give more predictable clearance values. This strategy produced compounds with desirable in vivo half-lives, ultimately leading to the discovery of compound 46. The progression of compound 46 was halted due to the contemporaneous marketing and clinical withdrawal of other centrally acting CB1 antagonists; however, the design strategy successfully delivered a potent CB1 antagonist with the desired pharmacokinetic properties and a clean off-target profile.

PMID:
24182233
DOI:
10.1021/jm4010835
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center