Send to

Choose Destination
Planta. 1992 Nov;188(4):457-61. doi: 10.1007/BF00197035.

Stem elongation and changes in the levels of gibberellins in shoot tips induced by differential photoperiodic treatments in the long-day plant Silene armeria.

Author information

Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, 48824-1312, East Lansing, MI, USA.


The effects of differential photoperiodic treatments applied to shoot tips and mature leaves of the long-day (LD) plant Silene armeria L. on growth and flowering responses, and on the levels of endogenous gibberellins (GAs), were investigated. Gibberellins were analyzed by gaschromatography-mass spectrometry and the use of internal standards. Exposure of mature leaves to LD, regardless of the photoperiodic conditions of the shoot tips, short days (SD), LD, or darkness, promoted elongation of the stems and of the immature leaves. Long-day treatment of the mature leaves modified the levels of endogenous GAs in shoot tips kept under LD, SD, or darkness. In shoot tips kept in LD or darkness the levels of GA53 were reduced, whereas the levels of GA19 and GA20 were increased. The contents of GA1 were increased in all three types of shoots: SD twofold, LD fivefold, and darkness eightfold. Dark treatment of the shoot tips on plants of which the mature leaves were grown in SD promoted elongation of the immature etiolated leaves and increased the GA1 content of the shoot tips threefold. However, this treatment did not cause stem elongation. The different photoperiodic treatments applied to the shoot tips did not change the levels of GAs in mature leaves. These results indicate that both LD and dark treatments result in an increase in GA1 in shoot tips. In addition, it is proposed that LD treatment induces the formation of a signal that is transmitted from mature leaves to shoot tips where it enhances the effect of GA on stem elongation.


Supplemental Content

Loading ...
Support Center