Format

Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2014 Jan;42(2):952-67. doi: 10.1093/nar/gkt988. Epub 2013 Oct 25.

Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication.

Author information

1
FinMIT Centre of Excellence, Institute of Biomedical Technology & Tampere University Hospital, Pirkanmaa Hospital District, FI-33014 University of Tampere, Finland and Department of Pediatrics, Institute for Genetic and Metabolic Disease, Radboud University Medical Centre, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.

Abstract

Mitochondrial DNA (mtDNA) is organized in discrete protein-DNA complexes, nucleoids, that are usually considered to be mitochondrial-inner-membrane associated. Here we addressed the association of replication factors with nucleoids and show that endogenous mtDNA helicase Twinkle and single-stranded DNA-binding protein, mtSSB, co-localize only with a subset of nucleoids. Using nucleotide analogs to identify replicating mtDNA in situ, the fraction of label-positive nucleoids that is Twinkle/mtSSB positive, is highest with the shortest labeling-pulse. In addition, the recruitment of mtSSB is shown to be Twinkle dependent. These proteins thus transiently associate with mtDNA in an ordered manner to facilitate replication. To understand the nature of mtDNA replication complexes, we examined nucleoid protein membrane association and show that endogenous Twinkle is firmly membrane associated even in the absence of mtDNA, whereas mtSSB and other nucleoid-associated proteins are found in both membrane-bound and soluble fractions. Likewise, a substantial amount of mtDNA is found as soluble or loosely membrane bound. We show that, by manipulation of Twinkle levels, mtDNA membrane association is partially dependent on Twinkle. Our results thus show that Twinkle recruits or is assembled with mtDNA at the inner membrane to form a replication platform and amount to the first clear demonstration that nucleoids are dynamic both in composition and concurrent activity.

PMID:
24163258
PMCID:
PMC3902951
DOI:
10.1093/nar/gkt988
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center