Send to

Choose Destination
J Proteome Res. 2014 Mar 7;13(3):1223-33. doi: 10.1021/pr400669d. Epub 2014 Feb 20.

Label-free quantitative proteomics analysis of antibiotic response in Staphylococcus aureus to oxacillin.

Author information

Department of Chemical and Biomolecular Engineering and ‡Division of Biomedical Engineering, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong.


Methicillin-resistant Staphylococcus aureus (MRSA) is the leading cause of fatal bacterial infections in hospitals and has become a global health threat. Although the resistance mechanisms of β-lactam antibiotics have been studied for decades, there are few attempts at systems-wide investigations into how the bacteria respond to antibiotic stress. Spectral counting-based label-free quantitative proteomics has been applied to study global responses in MRSA and methicillin-susceptible S. aureus (MSSA) treated with subinhibitory doses of oxacillin, a model β-lactam antibiotic. We developed a simple and easily repeated sample preparation procedure that is effective for extracting surface-associated proteins. On average, 1025 and 1013 proteins were identified at a false discovery rate threshold of 0.01, for the untreated group of MRSA and MSSA. Upon treatment with oxacillin, 81 proteins (65 up-regulated, 16 down-regulated) were shown differentially expressed in MRSA (p < 0.05). In comparison, 225 proteins (162 up-regulated, 63 down-regulated) were shown differentially expressed in oxacillin-treated MSSA. β-Lactamase and penicillin-binding protein 2a were observed up-regulated uniquely in oxacillin-treated MRSA, which is consistent with the known β-lactam resistance mechanisms of S. aureus. More interestingly, the peptidoglycan biosynthesis pathway and the pantothenate and CoA biosynthesis pathway were found to be up-regulated in both oxacillin-treated MRSA and MSSA, and a series of energy metabolism pathways were up-regulated uniquely in oxacillin-treated MSSA. These new data offer a more complete view of the proteome changes in bacteria in response to the antibiotic. This report is the first in using label-free quantitative proteomics to study β-lactam antibiotic responses in S. aureus.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center