Format

Send to

Choose Destination
PLoS Pathog. 2013;9(10):e1003689. doi: 10.1371/journal.ppat.1003689. Epub 2013 Oct 17.

Independent pathways can transduce the life-cycle differentiation signal in Trypanosoma brucei.

Author information

1
Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.

Abstract

African trypanosomes cause disease in humans and livestock, generating significant health and welfare problems throughout sub-Saharan Africa. When ingested in a tsetse fly bloodmeal, trypanosomes must detect their new environment and initiate the developmental responses that ensure transmission. The best-established environmental signal is citrate/cis aconitate (CCA), this being transmitted through a protein phosphorylation cascade involving two phosphatases: one that inhibits differentiation (TbPTP1) and one that activates differentiation (TbPIP39). Other cues have been also proposed (mild acid, trypsin exposure, glucose depletion) but their physiological relevance and relationship to TbPTP1/TbPIP39 signalling is unknown. Here we demonstrate that mild acid and CCA operate through TbPIP39 phosphorylation, whereas trypsin attack of the parasite surface uses an alternative pathway that is dispensable in tsetse flies. Surprisingly, glucose depletion is not an important signal. Mechanistic analysis through biophysical methods suggests that citrate promotes differentiation by causing TbPTP1 and TbPIP39 to interact.

PMID:
24146622
PMCID:
PMC3798605
DOI:
10.1371/journal.ppat.1003689
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center