Send to

Choose Destination
Can J Cardiol. 2013 Dec;29(12):1695-703. doi: 10.1016/j.cjca.2013.07.002. Epub 2013 Oct 18.

MicroRNA deregulation in right ventricular outflow tract myocardium in nonsyndromic tetralogy of fallot.

Author information

Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.



Tetralogy of Fallot (TOF) is 1 of the most common heart defects in children, and the underlying mechanisms remain largely elusive. MicroRNAs (miRNAs) are a class of regulators of gene expression and are increasingly recognized for their roles in heart development.


To identify miRNAs abnormally expressed in TOF, microarrays were used to analyze the miRNA expression profiles of 5 samples of myectomy tissues from right ventricular outflow tract (RVOT) obstruction of infants with nonsyndromic TOF and 3 age-matched normal RVOT tissues.


In total, 41 candidate miRNAs were identified. To further validate the microarray results, the 41 miRNAs were detected using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in a larger independent population of tissue samples, including 21 from patients with TOF and 6 from normal controls; it was found that 18 miRNAs were expressed at significantly different levels. Bioinformatic analysis revealed that these miRNAs targeted a network of genes involved in heart development and human congenital heart diseases. Further in vitro studies indicated that upregulation of miR-424/424* promoted proliferation and inhibited migration of primary embryonic mouse cardiomyocytes, whereas miR-222 promoted cardiomyocyte proliferation and reduced the cardiomyogenic differentiation of P19 cells. The 3'UTR (3' untranslated region) luciferase assay revealed that miR-424/424* suppressed the expression of HAS2 and NF1, and their mRNAs were underexpressed in the RVOT myocardial tissues of TOF.


Eighteen miRNAs were identified as being deregulated in RVOT myocardial tissues from infants with nonsyndromic TOF, and in vitro experiments indicated that miR-424/424* and miR-222 are involved in cardiomyocyte proliferation and migration and the cardiomyogenic differentiation of P19 cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center