Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cancer Ther. 2013 Dec;12(12):2864-73. doi: 10.1158/1535-7163.MCT-13-0233. Epub 2013 Oct 15.

IGFBP2/FAK pathway is causally associated with dasatinib resistance in non-small cell lung cancer cells.

Author information

1
Corresponding Author: Bingliang Fang, Department of Thoracic and Cardiovascular Surgery, Unit 445, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030. bfang@mdanderson.org.

Abstract

Insulin-like growth factor (IGF)-binding protein-2 (IGFBP2) expression is increased in various types of cancers, including in a subset of patients with lung cancer. Because IGFBP2 is involved in signal transduction of some critical cancer-related pathways, we analyzed the association between IGFBP2 and response to pathway-targeted agents in seven human non-small cell lung cancer (NSCLC) cell lines. Western blot analysis and ELISA showed that four of the seven NSCLC cell lines analyzed expressed high levels of IGFBP2, whereas the remaining three had barely detectable IGFBP2. Susceptibilities of those seven cell lines to nine anticancer agents targeting to IGF1R, Src, FAK, MEK, and AKT were determined by a dose-dependent cell viability assay. The results showed that high IGFBP2 levels were associated with resistance to dasatinib and, to a lesser degree, to sacaratinib, but not to other agents. Ectopic IGFBP2 overexpression or knockdown revealed that changing IGFBP2 expression levels reversed dasatinib susceptibility phenotype, suggesting a causal relationship between IGFBP2 expression and dasatinib resistance. Molecular characterization revealed that focal adhesion kinase (FAK) activation was associated with increased IGFBP2 expression and partially contributed to IGFBP2-mediated dasatinib resistance. Treatment with a combination of dasatinib and FAK inhibitor led to enhanced antitumor activity in IGFBP2-overexpressing and dasatinib-resistant NSCLC cells in vitro and in vivo. Our results showed that the IGFBP2/FAK pathway is causally associated with dasatinib resistance and may be used as biomarkers for identification of dasatinib responders among patients with lung cancer. Simultaneous targeting on Src and FAK will likely improve the therapeutic efficacy of dasatinib for treatment of lung cancer.

PMID:
24130049
PMCID:
PMC3858413
DOI:
10.1158/1535-7163.MCT-13-0233
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center