Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17874-9. doi: 10.1073/pnas.1311599110. Epub 2013 Oct 15.

Native contacts determine protein folding mechanisms in atomistic simulations.

Author information

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520.


The recent availability of long equilibrium simulations of protein folding in atomistic detail for more than 10 proteins allows us to identify the key interactions driving folding. We find that the collective fraction of native amino acid contacts, Q, captures remarkably well the transition states for all the proteins with a folding free energy barrier. Going beyond this global picture, we devise two different measures to quantify the importance of individual interresidue contacts in the folding mechanism: (i) the log-ratio of lifetimes of contacts during folding transition paths and in the unfolded state and (ii) a Bayesian measure of how predictive the formation of each contact is for being on a transition path. Both of these measures indicate that native, or near-native, contacts are important for determining mechanism, as might be expected. More remarkably, however, we found that for almost all the proteins, with the designed protein α3D being a notable exception, nonnative contacts play no significant part in determining folding mechanisms.


Gō models; frustration; funnel; internal friction; reaction coordinate

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center