Send to

Choose Destination
Int J Biometeorol. 2014 Sep;58(7):1443-50.

Body temperature and respiratory dynamics in un-shaded beef cattle.


In this study body temperature (BT, °C) and panting score (PS, 0-4.5; where 0 = no panting/no stress and 4.5 = catastrophic stress) data were obtained from 30 Angus steers housed outside over 120 days Steers were implanted with a BT transmitter on day -31, BT was recorded at 30-min intervals to a data logger and downloaded each day to a database. The cattle were housed in ten outdoor un-shaded pens with an earthen floor, eight of which had a pen floor area of 144 m2 (three transmitter steers plus five non-transmitter steers; 18 m2/steer) and two had an area of 168 m2 (three transmitter steers and six non-transmitter steers; 18.7 m2/steer). Only data from the transmitter steers were used in this study. The PS of the steers was obtained daily (± 15 min) at 0600 hours (AM), 1200 hours (MD) and 1600 hours (PM). At the same times climate variables (ambient temperature, black globe temperature, solar radiation, relative humidity, wind speed and rainfall) were obtained from an on-site weather station. PS observations were made from outside the pens so as not to influence cattle responses. The two closest BT values to the time when PS was obtained were downloaded retrospectively from a logger and averaged. A total of 8,352 observations were used to generate second order polynomial response curves: (AM) y = 39.08 + 0.009 x + 0.137x2 (R2 = 0.94; P < 0.001) (MD) y = 39.09 + 0.914x − 0.080x2 (R2 = 0.89; P < 0.001) and (PM) y = 39.52 + 0.790x − 0.068x2 (R2 = 0.83; P < 0.001) where y = BT (°C) and  x PS. These data suggest that PS is a good indicator of body temperature. The BT at MD corresponded to slightly lower PS compared with PM, e.g., for PS 1; BT at MD = 39.1 ± 0.05 °C whereas BT at PM = 39.5 ± 0.05 °C. However during AM, BT was lower (P < 0.05) at PS 1, 2 and 2.5 compared with MD and PM. For example, when PS was 2.5 the BT at AM was 40.2 ± 0.04 °C, at MD it was 40.9 ± 0.04 °C and at PM BT was 41.1 ± 0.04 °C. When PS was 0 the BT at AM and MD were similar. The AM response curve suggests animals attempt to increase heat dissipation during the cooler AM period relative to MD and PM. Morning observation of cattle (before feeding) are crucial for effective heat load management especially on days when high heat load is expected. The MD and PM observations provide a good indication of the impact of high environmental heat load on cattle. Differences in PS between AM and PM observations suggest that more research is needed to determine the effect of night time conditions on BT, PS and overall respiratory dynamics of cattle during periods of hot weather.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center