Format

Send to

Choose Destination
See comment in PubMed Commons below
Br J Pharmacol. 2014 Feb;171(3):646-62. doi: 10.1111/bph.12460.

Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity.

Author information

1
Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.

Abstract

BACKGROUND AND PURPOSE:

While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca²⁺ signalling and Ca²⁺ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca²⁺ signalling and sensitivity.

EXPERIMENTAL APPROACH:

Airways in mouse lung slices were contracted with either methacholine (MCh) or 5HT and bronchodilation assessed using phase-contrast microscopy. Ca²⁺ signalling was measured with 2-photon fluorescence microscopy of ASM cells loaded with Oregon Green, a Ca²⁺-sensitive indicator (with or without caged-IP₃). Effects on Ca²⁺ sensitivity were assessed on lung slices treated with caffeine and ryanodine to permeabilize ASM cells to Ca²⁺ .

KEY RESULTS:

The TAS2R10 agonists dilated airways constricted by either MCh or 5HT, accompanied by inhibition of agonist-induced Ca²⁺ oscillations. However, in non-contracted airways, TAS2R10 agonists, at concentrations that maximally dilated constricted airways, did not evoke Ca²⁺ signals in ASM cells. Ca²⁺ increases mediated by the photolysis of caged-IP₃ were also attenuated by chloroquine, quinine and denotonium. In Ca²⁺-permeabilized ASM cells, the TAS2R10 agonists dilated MCh- and 5HT-constricted airways.

CONCLUSIONS AND IMPLICATIONS:

TAS2R10 agonists reversed bronchoconstriction by inhibiting agonist-induced Ca²⁺ oscillations while simultaneously reducing the Ca²⁺ sensitivity of ASM cells. Reduction of Ca²⁺ oscillations may be due to inhibition of Ca²⁺ release through IP₃ receptors. Further characterization of bronchodilatory TAS2R agonists may lead to the development of novel therapies for the treatment of bronchoconstrictive conditions.

KEYWORDS:

2-photon microscopy; TAS2R; asthma; mouse lung slice; β2-adrenergic receptor agonists

PMID:
24117140
PMCID:
PMC3969078
DOI:
10.1111/bph.12460
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center