Send to

Choose Destination
Phys Rev Lett. 2013 Sep 27;111(13):136806. Epub 2013 Sep 25.

Entanglement detection from conductance measurements in carbon nanotube cooper pair splitters.

Author information

Departamento de Física Teórica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC), and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.


Spin-orbit interaction provides a spin filtering effect in carbon nanotube based Cooper pair splitters that allows us to determine spin correlators directly from current measurements. The spin filtering axes are tunable by a global external magnetic field. By a bending of the nanotube, the filtering axes on both sides of the Cooper pair splitter become sufficiently different that a test of entanglement of the injected Cooper pairs through a Bell-like inequality can be implemented. This implementation does not require noise measurements, supports imperfect splitting efficiency and disorder, and does not demand a full knowledge of the spin-orbit strength. Using a microscopic calculation we demonstrate that entanglement detection by violation of the Bell-like inequality is within the reach of current experimental setups.

Supplemental Content

Full text links

Icon for American Physical Society
Loading ...
Support Center