Format

Send to

Choose Destination
See comment in PubMed Commons below
J Magn Reson Imaging. 2014 May;39(5):1191-7. doi: 10.1002/jmri.24290. Epub 2013 Sep 23.

Rapid multicomponent T2 analysis of the articular cartilage of the human knee joint at 3.0T.

Author information

1
Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.

Abstract

PURPOSE:

To determine the feasibility of using multicomponent-driven equilibrium single-shot observation of T1 and T2 (mcDESPOT) for evaluating the human knee joint at 3.0T and to investigate depth-dependent and regional-dependent variations in multicomponent T2 parameters within articular cartilage.

MATERIALS AND METHODS:

mcDESPOT was performed on the knee joint of 10 asymptomatic volunteers at 3.0T. Single-component T2 relaxation time (T2single ), multicomponent T2 relaxation time for water tightly bound to proteoglycan (T2PG ) and bulk water loosely bound to the macromolecular matrix (T2BW ), and fraction of water tightly bound to proteoglycan (FPG ) were measured in eight cartilage subsections and within the superficial and deep layers of patellar cartilage. Statistical analysis was used to investigate depth-dependent and regional-dependent variations in parameters.

RESULTS:

There was lower (P = 0.001) T2single and T2PG and higher (P < 0.001) FPG in the deep than superficial layer of patellar cartilage. There was higher (P < 0.001) FPG on the weight-bearing surfaces than nonweight-bearing surfaces. There was higher (P < 0.001) T2single , T2PG , and T2BW on the trochlea and posterior medial and lateral femoral condyles than the patella, central medial and lateral femoral condyles, and medial and lateral tibia plateaus.

CONCLUSION:

Multicomponent T2 parameters of the articular cartilage of the human knee joint can be measured at 3.0T using mcDESPOT and show depth-dependent and regional-dependent variations.

KEYWORDS:

T2 relaxation time; cartilage; knee; multicomponent; relaxometry

PMID:
24115518
DOI:
10.1002/jmri.24290
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center