Send to

Choose Destination
See comment in PubMed Commons below
Am J Pathol. 2013 Dec;183(6):1779-88. doi: 10.1016/j.ajpath.2013.08.016. Epub 2013 Oct 8.

TRPC4 inactivation confers a survival benefit in severe pulmonary arterial hypertension.

Author information

Department of Pharmacology, Jordan University of Science and Technology, Irbid, Jordan; Department of Pharmacology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama.


Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary arterial pressure with lumen-occluding neointimal and plexiform lesions. Activation of store-operated calcium entry channels promotes contraction and proliferation of lung vascular cells. TRPC4 is a ubiquitously expressed store-operated calcium entry channel, but its role in PAH is unknown. We tested the hypothesis that TRPC4 promotes pulmonary arterial constriction and occlusive remodeling, leading to right ventricular failure in severe PAH. Severe PAH was induced in Sprague-Dawley rats and in wild-type and TRPC4-knockout Fischer 344 rats by a single subcutaneous injection of SU5416 [SU (semaxanib)], followed by hypoxia exposure (Hx; 10% O2) for 3 weeks and then a return to normoxia (Nx; 21% O2) for 3 to 10 additional weeks (SU/Hx/Nx). Although rats of both backgrounds exhibited indistinguishable pulmonary hypertensive responses to SU/Hx/Nx, Fischer 344 rats died within 6 to 8 weeks. Normoxic and hypertensive TRPC4-knockout rats recorded hemodynamic parameters similar to those of their wild-type littermates. However, TRPC4 inactivation conferred a striking survival benefit, due in part to preservation of cardiac output. Histological grading of vascular lesions revealed a reduction in the density of severely occluded small pulmonary arteries and in the number of plexiform lesions in TRPC4-knockout rats. TRPC4 inactivation therefore provides a survival benefit in severe PAH, associated with a decrease in the magnitude of occlusive remodeling.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center