Format

Send to

Choose Destination
See comment in PubMed Commons below
Nanotechnology. 2013 Nov 8;24(44):444005. doi: 10.1088/0957-4484/24/44/444005. Epub 2013 Oct 10.

Electronic sensitization of the response to C2H5OH of p-type NiO nanofibers by Fe doping.

Author information

1
Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.

Abstract

Pure and 0.18-13.2 at.% Fe-doped NiO nanofibers were prepared by electrospinning and their gas sensing characteristics and microstructural evolution were investigated. The responses ((Rg - Ra)/Ra, where Rg is the resistance in gas and Ra is the resistance in air) to 5 ppm C2H5OH, toluene, benzene, p-xylene, HCHO, CO, H2, and NH3 at 350-500 ° C were significantly enhanced by Fe doping of the NiO nanofibers, while the responses of pure NiO nanofibers to all the analyte gases were very low ((Rg - Ra)/Ra = 0.07-0.78). In particular, the response to 100 ppm C2H5OH was enhanced up to 217.86 times by doping of NiO nanofibers with 3.04 at.% Fe. The variation in the gas response was closely dependent upon changes in the base resistance of the sensors in air. The enhanced gas response of Fe-doped NiO nanofibers was explained in relation to electronic sensitization, that is, the increase in the chemoresistive variation due to the decrease in the hole concentration induced by Fe doping.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Support Center