Format

Send to

Choose Destination
See comment in PubMed Commons below
Phys Med Biol. 2013 Nov 7;58(21):7563-82. doi: 10.1088/0031-9155/58/21/7563. Epub 2013 Oct 10.

PIRPLE: a penalized-likelihood framework for incorporation of prior images in CT reconstruction.

Author information

1
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.

Abstract

Over the course of diagnosis and treatment, it is common for a number of imaging studies to be acquired. Such imaging sequences can provide substantial patient-specific prior knowledge about the anatomy that can be incorporated into a prior-image-based tomographic reconstruction for improved image quality and better dose utilization. We present a general methodology using a model-based reconstruction approach including formulations of the measurement noise that also integrates prior images. This penalized-likelihood technique adopts a sparsity enforcing penalty that incorporates prior information yet allows for change between the current reconstruction and the prior image. Moreover, since prior images are generally not registered with the current image volume, we present a modified model-based approach that seeks a joint registration of the prior image in addition to the reconstruction of projection data. We demonstrate that the combined prior-image- and model-based technique outperforms methods that ignore the prior data or lack a noise model. Moreover, we demonstrate the importance of registration for prior-image-based reconstruction methods and show that the prior-image-registered penalized-likelihood estimation (PIRPLE) approach can maintain a high level of image quality in the presence of noisy and undersampled projection data.

PMID:
24107545
PMCID:
PMC3868341
DOI:
10.1088/0031-9155/58/21/7563
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd. Icon for PubMed Central
    Loading ...
    Support Center