Send to

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2013 Nov 5;85(21):10597-604. doi: 10.1021/ac402739z. Epub 2013 Oct 23.

Measurement of blood protease kinetic parameters with self-assembled monolayer ligand binding assays and label-free MALDI-TOF MS.

Author information

Department of Pathology, University of Texas Southwestern Medical Center , Dallas, TX 75390-9072.


We report novel ligand binding assay (LBA) surface modalities that permit plasma protease catalytic efficiency (kcat/km) determination by MALDI-TOF MS without the use of liquid chromatography or internal standards such as chemical or metalized labels. Two model LBAs were constructed on planar self-assembled monolayers (SAMs) and used to evaluate the clinically relevant metalloprotease ADAMTS-13 kinetics in plasma. The SAM chemistries were designed to improve biosampling efficiency by minimization of nonspecific adsorption of abundant proteins present at ~100,000× the concentration of the endogenous enzyme. In the first protocol, in-solution digestion of the ADAMTS-13 substrate (vWFh) was performed with immunoaffinity enrichment of the reaction substrate and product to SAM arrays. The second configuration examined protease kcat/km via a surface digestion modality where different substrates were covalently immobilized to the SAM at controlled surface density for optimized protease screens. The results show the MALDI-TOF MS LBA platforms provide limits of quantitation to ~1% protease activity (~60 pM enzyme concentration) in <1 h analysis time, a ~16× improvement over other MS-based LBA formats. Implementation of a vacuum-sublimed MALDI matrix provided good MALDI-TOF MS intra- and interday repeatability, ~1.2 and ~6.6% RSD, respectively. Platform reliability permitted kcat/km determination without internal standards with observed values ~10× improved versus conventional fluorophoric assays. Application of the assays to 12 clinical plasma samples demonstrated proof-of-concept for clinical applications. Overall, this work demonstrates that rationally designed surface chemistries for MALDI-TOF MS may serve as an alternative, label-free methodology with potential for a wide range of biotechnology applications related to targeted enzyme molecular diagnostics.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center