Send to

Choose Destination
Nano Lett. 2013;13(11):5570-7. doi: 10.1021/nl403197m. Epub 2013 Oct 9.

Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries.

Author information

School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States.


We have measured the fracture energy of lithiated silicon thin-film electrodes as a function of lithium concentration. To this end, we have constructed an electrochemical cell capable of testing multiple thin-film electrodes in parallel. The stress in the electrodes is measured during electrochemical cycling by the substrate curvature technique. The electrodes are disconnected one by one after delithiating to various states of charge, that is, to various concentrations of lithium. The electrodes are then examined by optical microscopy to determine when cracks first form. All of the observed cracks appear brittle in nature. By determining the condition for crack initiation, the fracture energy is calculated using an analysis from fracture mechanics. In the same set of experiments, the fracture energy at a second state of charge (at small concentrations of lithium) is measured by determining the maximum value of the stress during delithiation. The fracture energy was determined to be Γ = 8.5 ± 4.3 J/m(2) at small concentrations of lithium (~Li0.7Si) and have bounds of Γ = 5.4 ± 2.2 J/m(2) to Γ = 6.9 ± 1.9 J/m(2) at larger concentrations of lithium (~Li2.8Si). These values indicate that the fracture energy of lithiated silicon is similar to that of pure silicon and is essentially independent of the concentration of lithium. Thus, lithiated silicon demonstrates a unique ability to flow plastically and fracture in a brittle manner.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center