Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2013 Oct 2;8(10):e76815. doi: 10.1371/journal.pone.0076815. eCollection 2013.

The impact of genome-wide supported schizophrenia risk variants in the neurogranin gene on brain structure and function.

Author information

1
Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.

Abstract

The neural mechanisms underlying genetic risk for schizophrenia, a highly heritable psychiatric condition, are still under investigation. New schizophrenia risk genes discovered through genome-wide association studies (GWAS), such as neurogranin (NRGN), can be used to identify these mechanisms. In this study we examined the association of two common NRGN risk single nucleotide polymorphisms (SNPs) with functional and structural brain-based intermediate phenotypes for schizophrenia. We obtained structural, functional MRI and genotype data of 92 schizophrenia patients and 114 healthy volunteers from the multisite Mind Clinical Imaging Consortium study. Two schizophrenia-associated NRGN SNPs (rs12807809 and rs12541) were tested for association with working memory-elicited dorsolateral prefrontal cortex (DLPFC) activity and surface-wide cortical thickness. NRGN rs12541 risk allele homozygotes (TT) displayed increased working memory-related activity in several brain regions, including the left DLPFC, left insula, left somatosensory cortex and the cingulate cortex, when compared to non-risk allele carriers. NRGN rs12807809 non-risk allele (C) carriers showed reduced cortical gray matter thickness compared to risk allele homozygotes (TT) in an area comprising the right pericalcarine gyrus, the right cuneus, and the right lingual gyrus. Our study highlights the effects of schizophrenia risk variants in the NRGN gene on functional and structural brain-based intermediate phenotypes for schizophrenia. These results support recent GWAS findings and further implicate NRGN in the pathophysiology of schizophrenia by suggesting that genetic NRGN risk variants contribute to subtle changes in neural functioning and anatomy that can be quantified with neuroimaging methods.

PMID:
24098564
PMCID:
PMC3788740
DOI:
10.1371/journal.pone.0076815
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center