Format

Send to

Choose Destination
J Endocrinol. 2013 Oct 4;219(2):159-71. doi: 10.1530/JOE-13-0099. Print 2013 Nov.

Pre- and postnatal nutrition in sheep affects β-cell secretion and hypothalamic control.

Author information

1
Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Cook Medical Europe APS, Bjaeverskov, Denmark School of Animal Biology, University of Western Australia, Perth, Western Australia, Australia Department of Basic Sciences and Environment, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Department of Animal Science, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Nuclear Magnetic Resonance Centre, University of Copenhagen, Copenhagen, Denmark.

Abstract

Maternal undernutrition increases the risk of type 2 diabetes and metabolic syndrome later in life, particularly upon postnatal exposure to a high-energy diet. However, dysfunctions of, for example, the glucose-insulin axis are not readily detectable by conventional tests early in life, making it difficult to identify individuals at risk. Thus, other methods are required. We hypothesised that prenatally undernourished individuals (but not postnatally overnourished ones) are adapted to a life with limited food availability, which would be evident under conditions reflecting starvation, stress and short-term abundance of food. In this study, twin-pregnant sheep were fed diets meeting 100% (NORM) or 50% (LOW) of energy and protein requirements during the last trimester. Twin offspring were fed either a normal moderate (CONV) diet or a high-carbohydrate-high-fat (HCHF) diet from 3 days to 6 months of age (approximately puberty) and the same moderate diet thereafter until 2 years of age (young adulthood; only females), resulting in four groups: NORM-CONV, LOW-CONV, NORM-HCHF and LOW-HCHF. At the age of 6 months and 2 years respectively, they were subjected to fasting and propionate (nutrient abundance) and adrenalin challenges. At 6 months of age, postnatal HCHF diet exposure caused metabolic alterations, reflecting hypertriglyceridaemia and altered pancreatic β-cell secretion. Irrespective of postnatal diet, prenatal undernutrition was found to be associated with unexpected endocrine responses of leptin, IGF1 and cortisol during fasting (lack of or the opposite response compared with the controls) in 2-year-old adults. In conclusion, a HCHF diet interfered with β-cell function, whereas maternal undernutrition did not lead to any changes in the LOW offspring, except to abnormal hormone responses, suggesting that fetal programming interferes with hypothalamic integration of important endocrine axis.

KEYWORDS:

IGF1; cortisol; fasting; gluconeogenesis; glucose; insulin; leptin; obesity; prenatal programming; propionate tolerance test

PMID:
24096964
DOI:
10.1530/JOE-13-0099
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center