Send to

Choose Destination
See comment in PubMed Commons below
J Control Release. 2013 Dec 28;172(3):993-1001. doi: 10.1016/j.jconrel.2013.09.023. Epub 2013 Oct 2.

Rubik-like magnetic nanoassemblies as an efficient drug multifunctional carrier for cancer theranostics.

Author information

State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.


A practical and effective strategy for loading hydrophobic anticancer agents within the inside and outside oleic acid layer of Rubik-like magnetic nanoassemblies (MNAs) is established. In this strategy, four individual oleic acid-capped iron oxide nanocubes and dioleate-modified polyethylene glycol are assembled into cluster with high drug loading capability, high magnetism, as well as rapid and extended release behavior. After loading model drug paclitaxel (PTX), PTX-MNAs show greater antitumor activity both in vitro cell culture and in vivo animal trials compared with the same dose of free PTX (Taxol). With high uptake by tumor cells, MNAs exhibit in tumor imaging by magnetic resonance imaging. These outstanding properties are largely due to the drug delivery systems that take high drug-loading capability and high magnetism into consideration in a nano-dimension for maximizing the nanotheranostic functions and minimizing the toxic side effects. In summary, the Rubik-like magnetic nanoassemblies may have the potential to realize "all-in-one" nanotheranostic strategy to detect, diagnose, treat, and monitor tumors and therapeutic response in further pre-clinical and clinical studies.


Cancer therapy; Iron oxide nanocubes; Magnetic nanoassemblies; Magnetic resonance image; Paclitaxel

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center