Format

Send to

Choose Destination
Respir Res. 2013 Oct 5;14:99. doi: 10.1186/1465-9921-14-99.

Transposable elements and their potential role in complex lung disorder.

Author information

1
Molecular genetics of lung diseases group, Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, GmbH, Ingolstadter, Landstrasse 1, D-85764, Neuherberg, Munich, Germany. murali.sarguru@helmholtz-muenchen.de.

Abstract

Transposable elements (TEs) are a class of mobile genetic elements (MGEs) that were long regarded as junk DNA, which make up approximately 45% of the genome. Although most of these elements are rendered inactive by mutations and other gene silencing mechanisms, TEs such as long interspersed nuclear elements (LINEs) are still active and translocate within the genome. During transposition, they may create lesions in the genome, thereby acting as epigenetic modifiers. Approximately 65 disease-causing LINE insertion events have been reported thus far; however, any possible role of TEs in complex disorders is not well established. Chronic obstructive pulmonary disease (COPD) is one such complex disease that is primarily caused by cigarette smoking. Although the exact molecular mechanism underlying COPD remains unclear, oxidative stress is thought to be the main factor in the pathogenesis of COPD. In this review, we explore the potential role of oxidative stress in epigenetic activation of TEs such as LINEs and the subsequent cascade of molecular damage. Recent advancements in sequencing and computation have eased the identification of mobile elements. Therefore, a comparative study on the activity of these elements and markers for genome instability would give more insight on the relationship between MGEs and complex disorder such as COPD.

PMID:
24093510
PMCID:
PMC3851442
DOI:
10.1186/1465-9921-14-99
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center