Format

Send to

Choose Destination
See comment in PubMed Commons below
Circulation. 2013 Nov 19;128(21):2318-24. doi: 10.1161/CIRCULATIONAHA.113.003192. Epub 2013 Oct 3.

Plasminogen activator inhibitor-1 antagonist TM5441 attenuates Nω-nitro-L-arginine methyl ester-induced hypertension and vascular senescence.

Author information

1
Department of Medicine (A.E.B., M.E., S.B.M., C.E.K., D.E.V.) and Feinberg Cardiovascular Research Institute (A.E.B., S.B.M., C.E.K., D.E.V.), Northwestern University Feinberg School of Medicine, Chicago, IL; United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Miyagi, Japan (A.I., T.M.); and Conrad Prebys Center for Chemical Genomics (D.T., D.M., L.H.S.) and Cardiopathobiology Program, Diabetes and Obesity Research Center (D.M., L.H.S.), Sanford Burnham Medical Research Institute at Lake Nona, Orlando FL.

Abstract

BACKGROUND:

Long-term inhibition of nitric oxide synthase by L-arginine analogues such as N(ω)-nitro-l-arginine methyl ester (L-NAME) has been shown to induce senescence in vitro and systemic hypertension and arteriosclerosis in vivo. We previously reported that plasminogen activator inhibitor-1 (PAI-1)-deficient mice (PAI-1(-/-)) are protected against L-NAME-induced pathologies. In this study, we investigated whether a novel, orally active PAI-1 antagonist (TM5441) has a similar protective effect against L-NAME treatment. Additionally, we studied whether L-NAME can induce vascular senescence in vivo and investigated the role of PAI-1 in this process.

METHODS AND RESULTS:

Wild-type mice received either L-NAME or L-NAME and TM5441 for 8 weeks. Systolic blood pressure was measured every 2 weeks. We found that TM5441 attenuated the development of hypertension and cardiac hypertrophy compared with animals that had received L-NAME alone. Additionally, TM5441-treated mice had a 34% reduction in periaortic fibrosis relative to animals on L-NAME alone. Finally, we investigated the development of vascular senescence by measuring p16(Ink4a) expression and telomere length in aortic tissue. We found that L-NAME increased p16(Ink4a) expression levels and decreased telomere length, both of which were prevented with TM5441 cotreatment.

CONCLUSIONS:

Pharmacological inhibition of PAI-1 is protective against the development of hypertension, cardiac hypertrophy, and periaortic fibrosis in mice treated with L-NAME. Furthermore, PAI-1 inhibition attenuates the arterial expression of p16(Ink4a) and maintains telomere length. PAI-1 appears to play a pivotal role in vascular senescence, and these findings suggest that PAI-1 antagonists may provide a novel approach in preventing vascular aging and hypertension.

KEYWORDS:

aging; hypertension; nitric oxide synthase

PMID:
24092817
PMCID:
PMC3933362
DOI:
10.1161/CIRCULATIONAHA.113.003192
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center