Format

Send to

Choose Destination
Mol Cancer Ther. 2013 Dec;12(12):2709-21. doi: 10.1158/1535-7163.MCT-13-0626. Epub 2013 Oct 3.

Molecular and biologic analysis of histone deacetylase inhibitors with diverse specificities.

Author information

1
Corresponding Author: Ricky Johnstone, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria 3002, Australia. ricky.johnstone@petermac.org.

Abstract

Histone deacetylase inhibitors (HDACi) are anticancer agents that induce hyperacetylation of histones, resulting in chromatin remodeling and transcriptional changes. In addition, nonhistone proteins, such as the chaperone protein Hsp90, are functionally regulated through hyperacetylation mediated by HDACis. Histone acetylation is thought to be primarily regulated by HDACs 1, 2, and 3, whereas the acetylation of Hsp90 has been proposed to be specifically regulated through HDAC6. We compared the molecular and biologic effects induced by an HDACi with broad HDAC specificity (vorinostat) with agents that predominantly inhibited selected class I HDACs (MRLB-223 and romidepsin). MRLB-223, a potent inhibitor of HDACs 1 and 2, killed tumor cells using the same apoptotic pathways as the HDAC 1, 2, 3, 6, and 8 inhibitor vorinostat. However, vorinostat induced histone hyperacetylation and killed tumor cells more rapidly than MRLB-223 and had greater therapeutic efficacy in vivo. FDCP-1 cells dependent on the Hsp90 client protein Bcr-Abl for survival, were killed by all HDACis tested, concomitant with caspase-dependent degradation of Bcr-Abl. These studies provide evidence that inhibition of HDAC6 and degradation of Bcr-Abl following hyperacetylation of Hsp90 is likely not a major mechanism of action of HDACis as had been previously posited.

PMID:
24092806
DOI:
10.1158/1535-7163.MCT-13-0626
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center