Format

Send to

Choose Destination
Arterioscler Thromb Vasc Biol. 2013 Dec;33(12):2715-23. doi: 10.1161/ATVBAHA.113.301468. Epub 2013 Oct 3.

Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities.

Author information

1
From the National Institute for Health and Medical Research (INSERM), Dyslipidemia, Inflammation and Atherosclerosis Research Unit (UMR 939), Paris, France (L.C., M.L., F.R., W.L.G., M.J.C., A.K.); Université Pierre et Marie Curie - Paris 6, Paris, France (L.C., M.L., F.R., W.L.G., M.J.C., A.K.); AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France (L.C., M.L., F.R., W.L.G., M.J.C., A.K.); ICAN, Paris, France (L.C., M.L., F.R., W.L.G., M.J.C., A.K.); Heart Institute-InCor, University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil (F.R.); INSERM UMR- 1048, Toulouse, France (A.N.-S., R.S.); Faculty of Medicine, Department of Biochemistry, University of Toulouse, Toulouse, France (A.N.-S., R.S.); and INSERM UMR- 1060, Université de Lyon, Cardiovasculaire, Métabolisme, Diabétologie, et Nutrition (CarMeN), INSA-Lyon, IMBL, Lyon, France (C.C., M.L.).

Abstract

OBJECTIVE:

High-density lipoprotein (HDL) displays multiple atheroprotective activities and is highly heterogeneous in structure, composition, and function; the molecular determinants of atheroprotective functions of HDL are incompletely understood. Because phospholipids represent a major bioactive lipid component of HDL, we characterized the phosphosphingolipidome of major normolipidemic HDL subpopulations and related it to HDL functionality.

APPROACH AND RESULTS:

Using an original liquid chromatography-mass spectrometry/mass spectrometry methodology for phospholipid and sphingolipid profiling, 162 individual molecular lipid species were quantified across the 9 lipid subclasses, in the order of decreasing abundance, phosphatidylcholine>sphingomyelin>lysophosphatidylcholine>phosphatidylethanolamine>phosphatidylinositol>ceramide>phosphatidylserine>phosphatidylglycerol>phosphatidic acid. When data were expressed relative to total lipid, the contents of lysophosphatidylcholine and of negatively charged phosphatidylserine and phosphatidic acid increased progressively with increase in hydrated density of HDL, whereas the proportions of sphingomyelin and ceramide decreased. Key biological activities of HDL subpopulations, notably cholesterol efflux capacity from human THP-1 macrophages, antioxidative activity toward low-density lipoprotein oxidation, antithrombotic activity in human platelets, cell-free anti-inflammatory activity, and antiapoptotic activity in endothelial cells, were predominantly associated with small, dense, protein-rich HDL3. The biological activities of HDL particles were strongly intercorrelated, exhibiting significant correlations with multiple components of the HDL phosphosphingolipidome. Specifically, the content of phosphatidylserine revealed positive correlations with all metrics of HDL functionality, reflecting enrichment of phosphatidylserine in small, dense HDL3.

CONCLUSIONS:

Our structure-function analysis thereby reveals that the HDL lipidome may strongly affect atheroprotective functionality.

KEYWORDS:

HDL, small, dense; functionality; lipidome; lipidomics; phosphatidylserine; phospholipids; sphingolipids

PMID:
24092747
DOI:
10.1161/ATVBAHA.113.301468
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center