Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species

PLoS One. 2013 Sep 25;8(9):e74218. doi: 10.1371/journal.pone.0074218. eCollection 2013.

Abstract

Eurythenes gryllus is one of the most widespread amphipod species, occurring in every ocean with a depth range covering the bathyal, abyssal and hadal zones. Previous studies, however, indicated the existence of several genetically and morphologically divergent lineages, questioning the assumption of its cosmopolitan and eurybathic distribution. For the first time, its genetic diversity was explored at the global scale (Arctic, Atlantic, Pacific and Southern oceans) by analyzing nuclear (28S rDNA) and mitochondrial (COI, 16S rDNA) sequence data using various species delimitation methods in a phylogeographic context. Nine putative species-level clades were identified within E. gryllus. A clear distinction was observed between samples collected at bathyal versus abyssal depths, with a genetic break occurring around 3,000 m. Two bathyal and two abyssal lineages showed a widespread distribution, while five other abyssal lineages each seemed to be restricted to a single ocean basin. The observed higher diversity in the abyss compared to the bathyal zone stands in contrast to the depth-differentiation hypothesis. Our results indicate that, despite the more uniform environment of the abyss and its presumed lack of obvious isolating barriers, abyssal populations might be more likely to show population differentiation and undergo speciation events than previously assumed. Potential factors influencing species' origins and distributions, such as hydrostatic pressure, are discussed. In addition, morphological findings coincided with the molecular clades. Of all specimens available for examination, those of the bipolar bathyal clade seemed the most similar to the 'true' E. gryllus. We present the first molecular evidence for a bipolar distribution in a macro-benthic deep-sea organism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amphipoda / classification
  • Amphipoda / genetics*
  • Animals
  • Genetic Variation*
  • Geography
  • Phylogeny
  • Species Specificity

Grants and funding

This work was supported by the Belgian Science Policy Office and Scientific Research Program on Antarctica, with the project BIANZO II. The first author was supported by an Action II grant (contract number WI/36/H04) and CUA by an Action I grant (contract number MO/36/022) of the Belgian Science Policy Office. GS and ZTN are part of the Joint Experimental Molecular Unit, also supported by the Belgian Science Policy Office. Part of the molecular work was funded by an Antarctic Science Bursary to the first author. SA and C Held were supported by the DFG grant HE 3391/5-1 within the SPP 1158. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Samples were collected during the expeditions ANDEEP I, II, III, ANT-XIII-8, ANT XXVII-3, ARK XIX-3 aboard RV Polarstern, the expedition DIVA-3 aboard RV Meteor and a cruise aboard RV Jan Mayen.