Format

Send to

Choose Destination
Appl Opt. 2013 Sep 20;52(27):6645-51. doi: 10.1364/AO.52.006645.

Error analysis of compensation cutting technique for wavefront error of KH2PO4 crystal.

Abstract

Considering the wavefront error of KH(2)PO(4) (KDP) crystal is difficult to control through face fly cutting process because of surface shape deformation during vacuum suction, an error compensation technique based on a spiral turning method is put forward. An in situ measurement device is applied to measure the deformed surface shape after vacuum suction, and the initial surface figure error, which is obtained off-line, is added to the in situ surface shape to obtain the final surface figure to be compensated. Then a three-axis servo technique is utilized to cut the final surface shape. In traditional cutting processes, in addition to common error sources such as the error in the straightness of guide ways, spindle rotation error, and error caused by ambient environment variance, three other errors, the in situ measurement error, position deviation error, and servo-following error, are the main sources affecting compensation accuracy. This paper discusses the effect of these three errors on compensation accuracy and provides strategies to improve the final surface quality. Experimental verification was carried out on one piece of KDP crystal with the size of Φ270 mm×11 mm. After one compensation process, the peak-to-valley value of the transmitted wavefront error dropped from 1.9λ (λ=632.8 nm) to approximately 1/3λ, and the mid-spatial-frequency error does not become worse when the frequency of the cutting tool trajectory is controlled by use of a low-pass filter.

PMID:
24085161

Supplemental Content

Loading ...
Support Center