Format

Send to

Choose Destination
Nat Photonics. 2012;6:35-40.

Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements.

Author information

1
Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.

Abstract

X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis1. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information1-4. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology5 should enable structural determination from submicrometre protein crystals with atomic resolution.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center