Stromal interaction molecule 1 (STIM1) regulates sarcoplasmic/endoplasmic reticulum Ca²⁺-ATPase 1a (SERCA1a) in skeletal muscle

Pflugers Arch. 2014 May;466(5):987-1001. doi: 10.1007/s00424-013-1361-6.

Abstract

Stromal interaction molecule 1 (STIM1) mediates Ca2+ movements from the extracellular space to the cytosol through a store-operated Ca2+ entry (SOCE) mechanism in various cells including skeletal muscle cells. In the present study, to reveal the unidentified functional role of the STIM1 C terminus from 449 to 671 amino acids in skeletal muscle, binding assays and quadrupole time-of-flight mass spectrometry were used to identify proteins binding in this region along with proteins that mediate skeletal muscle contraction and relaxation. STIM1 binds to sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a (SERCA1a) via this region (called STIM1-SBR). The binding was confirmed in endogenous full-length STIM1 in rabbit skeletal muscle and mouse primary skeletal myotubes via co-immunoprecipitation assay and immunocytochemistry. STIM1 knockdown in mouse primary skeletal myotubes decreased Ca2+ uptake from the cytosol to the sarcoplasmic reticulum (SR) through SERCA1a only at micromolar cytosolic Ca2+ concentrations, suggesting that STIM1 could be required for the full activity of SERCA1a possibly during the relaxation of skeletal muscle. Various Ca2+ imaging experiments using myotubes expressing STIM1-SBR suggest that STIM1 is involved in intracellular Ca2+ distributions between the SR and the cytosol via regulating SERCA1a activity without affecting SOCE. Therefore, in skeletal muscle, STIM1 could play an important role in regulating Ca2+ movements between the SR and the cytosol.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Binding Sites
  • Calcium / metabolism
  • Calcium Channels / chemistry
  • Calcium Channels / genetics
  • Calcium Channels / metabolism*
  • Calcium Signaling
  • Mice
  • Molecular Sequence Data
  • Muscle Fibers, Skeletal / metabolism*
  • Protein Binding
  • Rabbits
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / genetics
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / metabolism*
  • Stromal Interaction Molecule 1

Substances

  • Calcium Channels
  • Stim1 protein, mouse
  • Stromal Interaction Molecule 1
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases
  • Calcium