Format

Send to

Choose Destination
Curr Genet. 2014 Feb;60(1):49-59. doi: 10.1007/s00294-013-0410-1. Epub 2013 Sep 27.

Mitochondrial genome of the basidiomycetous yeast Jaminaea angkorensis.

Author information

1
Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina CH-1, 842 15, Bratislava, Slovak Republic.

Abstract

Jaminaea angkorensis is an anamorphic basidiomycetous yeast species originally isolated from decaying leaves in Cambodia. Taxonomically, J. angkorensis is affiliated with Microstromatales (Exobasidiomycetes, Ustilaginomycotina, Basidiomycota) and represents a basal phylogenetic lineage of this fungal order. To perform a comparative analysis of J. angkorensis with other basidiomycetes, we determined and analyzed its complete mitochondrial DNA sequence. The mitochondrial genome is represented by 29,999 base pairs long, circular DNA containing 32 % guanine and cytosine residues. Its genetic organization is relatively compact and comprises typical genes for 15 conserved proteins involved in oxidative phosphorylation (atp6, 8, and 9; cob; cox1, 2, and 3; and nad1, 2, 3, 4, 4L, 5, and 6) and translation (rps3), two ribosomal RNAs (rnl and rns) and twenty-two transfer RNAs (trnA-Y). Although the gene content is similar to other basidiomycetes, the gene orders in the examined species exhibit only a limited synteny, reflecting their phylogenetic distances and extensive genome rearrangements. In addition, a comparative analysis of basidiomycete mitochondrial genomes indicates that stop-to-tryptophan reassignment of the UGA codon was accompanied by structural alterations of tRNA-Trp(CCA). These results provide an insight into the evolution of the genetic code in fungal mitochondria.

PMID:
24071901
DOI:
10.1007/s00294-013-0410-1
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center