Send to

Choose Destination
Nutrients. 2013 Sep 17;5(9):3684-95. doi: 10.3390/nu5093684.

A randomized steady-state bioavailability study of synthetic versus natural (kiwifruit-derived) vitamin C.

Author information

Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand.


Whether vitamin C from wholefoods has equivalent bioavailability to a purified supplement remains unclear. We have previously showed that kiwifruit provided significantly higher serum and tissue ascorbate levels than synthetic vitamin C in a genetically vitamin C-deficient mouse model, suggesting a synergistic activity of the whole fruit. To determine if these results are translatable to humans, we carried out a randomized human study comparing the bioavailability of vitamin C from kiwifruit with that of a vitamin C tablet of equivalent dosage. Thirty-six young non-smoking adult males were randomized to receive either half a gold kiwifruit (Actinidia Chinensis var. Hort 16A) per day or a comparable vitamin C dose (50 mg) in a chewable tablet for six weeks. Ascorbate was monitored weekly in fasting venous blood and in urine, semen, leukocytes, and skeletal muscle (vastus lateralis) pre- and post-intervention. Dietary intake of vitamin C was monitored using seven day food and beverage records. Participant ascorbate levels increased in plasma (P < 0.001), urine (P < 0.05), mononuclear cells (P < 0.01), neutrophils (P < 0.01) and muscle tissue (P < 0.001) post intervention. There were no significant differences in vitamin C bioavailability between the two intervention groups in any of the fluid, cell or tissue samples tested. Overall, our study showed comparable bioavailability of synthetic and kiwifruit-derived vitamin C.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center