Format

Send to

Choose Destination
Nat Genet. 2013 Nov;45(11):1293-9. doi: 10.1038/ng.2759. Epub 2013 Sep 22.

The landscape of somatic mutations in Down syndrome-related myeloid disorders.

Author information

1
1] Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. [2] Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. [3].

Erratum in

  • Nat Genet. 2013 Dec;45(12):1516.

Abstract

Transient abnormal myelopoiesis (TAM) is a myeloid proliferation resembling acute megakaryoblastic leukemia (AMKL), mostly affecting perinatal infants with Down syndrome. Although self-limiting in a majority of cases, TAM may evolve as non-self-limiting AMKL after spontaneous remission (DS-AMKL). Pathogenesis of these Down syndrome-related myeloid disorders is poorly understood, except for GATA1 mutations found in most cases. Here we report genomic profiling of 41 TAM, 49 DS-AMKL and 19 non-DS-AMKL samples, including whole-genome and/or whole-exome sequencing of 15 TAM and 14 DS-AMKL samples. TAM appears to be caused by a single GATA1 mutation and constitutive trisomy 21. Subsequent AMKL evolves from a pre-existing TAM clone through the acquisition of additional mutations, with major mutational targets including multiple cohesin components (53%), CTCF (20%), and EZH2, KANSL1 and other epigenetic regulators (45%), as well as common signaling pathways, such as the JAK family kinases, MPL, SH2B3 (LNK) and multiple RAS pathway genes (47%).

PMID:
24056718
DOI:
10.1038/ng.2759
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center