Format

Send to

Choose Destination
J Vis Exp. 2013 Sep 9;(79). doi: 10.3791/50635.

Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometric analysis of intact proteins larger than 100 kDa.

Author information

1
Institute of Structural Biology "J.P. Ebel", UMR5075, Commissariat à L'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université J. Fourier.

Abstract

Effectively determining masses of proteins is critical to many biological studies (e.g. for structural biology investigations). Accurate mass determination allows one to evaluate the correctness of protein primary sequences, the presence of mutations and/or post-translational modifications, the possible protein degradation, the sample homogeneity, and the degree of isotope incorporation in case of labelling (e.g. (13)C labelling). Electrospray ionisation (ESI) mass spectrometry (MS) is widely used for mass determination of denatured proteins, but its efficiency is affected by the composition of the sample buffer. In particular, the presence of salts, detergents, and contaminants severely undermines the effectiveness of protein analysis by ESI-MS. Matrix-assisted laser desorption/ionization (MALDI) MS is an attractive alternative, due to its salt tolerance and the simplicity of data acquisition and interpretation. Moreover, the mass determination of large heterogeneous proteins (bigger than 100 kDa) is easier by MALDI-MS due to the absence of overlapping high charge state distributions which are present in ESI spectra. Here we present an accessible approach for analysing proteins larger than 100 kDa by MALDI-time of flight (TOF). We illustrate the advantages of using a mixture of two matrices (i.e. 2,5-dihydroxybenzoic acid and α-cyano-4-hydroxycinnamic acid) and the utility of the thin layer method as approach for sample deposition. We also discuss the critical role of the matrix and solvent purity, of the standards used for calibration, of the laser energy, and of the acquisition time. Overall, we provide information necessary to a novice for analysing intact proteins larger than 100 kDa by MALDI-MS.

PMID:
24056304
PMCID:
PMC3857990
DOI:
10.3791/50635
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for MyJove Corporation Icon for PubMed Central
Loading ...
Support Center