Send to

Choose Destination
Biochim Biophys Acta. 2013 Dec;1832(12):2322-31. doi: 10.1016/j.bbadis.2013.09.005. Epub 2013 Sep 19.

MitoQ, a mitochondria-targeted antioxidant, delays disease progression and alleviates pathogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis.

Author information

Neurogenetics Laboratory, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA; Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.


Oxidative stress and mitochondrial dysfunction are involved in the progression and pathogenesis of multiple sclerosis (MS). MitoQ is a mitochondria-targeted antioxidant that has a neuroprotective role in several mitochondrial and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Here we sought to determine the possible effects of a systematic administration of MitoQ as a therapy, using an experimental autoimmune encephalomyelitis (EAE) mouse model. We studied the beneficial effects of MitoQ in EAE mice that mimic MS like symptoms by treating EAE mice with MitoQ and pretreated C57BL6 mice with MitoQ plus EAE induction. We found that pretreatment and treatment of EAE mice with MitoQ reduced neurological disabilities associated with EAE. We also found that both pretreatment and treatment of the EAE mice with MitoQ significantly suppressed inflammatory markers of EAE, including the inhibition of inflammatory cytokines and chemokines. MitoQ treatments reduced neuronal cell loss in the spinal cord, a factor underlying motor disability in EAE mice. The neuroprotective role of MitoQ was confirmed by a neuron-glia co-culture system designed to mimic the mechanism of MS and EAE in vitro. We found that axonal inflammation and oxidative stress are associated with impaired behavioral functions in the EAE mouse model and that treatment with MitoQ can exert protective effects on neurons and reduce axonal inflammation and oxidative stress. These protective effects are likely via multiple mechanisms, including the attenuation of the robust immune response. These results suggest that MitoQ may be a new candidate for the treatment of MS.


Inflammation; Mitochondria-targeted antioxidant; Mitochondrial dysfunction; Multiple sclerosis; Neuron; Oxidative stress

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center