Format

Send to

Choose Destination
See comment in PubMed Commons below
Melanoma Res. 2013 Dec;23(6):434-43. doi: 10.1097/CMR.0000000000000021.

Interleukin-6-induced Twist and N-cadherin enhance melanoma cell metastasis.

Author information

1
aDepartment of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul bDepartment of Dermatology, Kyungpook National University School of Medicine, Daegu, Korea.

Abstract

Melanoma patients frequently have elevated serum levels of interleukin-6 (IL-6), which is correlated with a poor prognosis. IL-6 activates STAT3 phosphorylation, inducing the transcription of genes that regulate tumor cell proliferation and antiapoptosis. In addition, recent evidence suggests that IL-6 induces the epithelial-to-mesenchymal transition and enhances the invasiveness of tumor cells of epithelial origin. However, it is unknown whether IL-6 affects mesenchymal tumor cells. In this study, we examined the effects of IL-6 on melanoma cells and found that IL-6 can enhance their metastatic potential by regulating the expression of Twist and N-cadherin. First, we confirmed that human melanoma tissues express IL-6 (especially at the lesion site), the IL-6 receptor, N-cadherin, and nuclear Twist. Next, we found that IL-6 induces STAT3 phosphorylation in WM-266-4 human melanoma cells, resulting in transient upregulation of Twist, which is a key regulator of metastasis. Importantly, the expression of N-cadherin, a protein downstream of Twist, was also increased on the cell surface after treatment with IL-6. These cells showed enhanced invasiveness, assessed using an invasion assay, and formed more metastatic nodules in the lungs of NOD-SCID mice after an intravenous injection. Importantly, melanoma cells with knocked-down N-cadherin formed less lung nodules compared with control in the NOD-SCID mouse model. Our data suggest that increased serum IL-6 in cancer patients could increase the invasiveness of melanoma cells and accelerate metastasis. Blocking IL-6 in the melanoma microenvironment may therefore inhibit disease progression.

PMID:
24051540
DOI:
10.1097/CMR.0000000000000021
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Support Center