Electroluminescent, polycrystalline cadmium selenide nanowire arrays

ACS Nano. 2013 Oct 22;7(10):9469-79. doi: 10.1021/nn4043546. Epub 2013 Sep 25.

Abstract

Electroluminescence (EL) from nanocrystalline CdSe (nc-CdSe) nanowire arrays is reported. The n-type, nc-CdSe nanowires, 400-450 nm in width and 60 nm in thickness, were synthesized using lithographically patterned nanowire electrodeposition, and metal-semiconductor-metal (M-S-M) devices were prepared by the evaporation of two gold contacts spaced by either 0.6 or 5 μm. These M-S-M devices showed symmetrical current voltage curves characterized by currents that increased exponentially with applied voltage bias. As the applied biased was increased, an increasing number of nanowires within the array "turned on", culminating in EL emission from 30 to 50% of these nanowires at applied voltages of 25-30 V. The spectrum of the emitted light was broad and centered at 770 nm, close to the 1.74 eV (712 nm) band gap of CdSe. EL light emission occurred with an external quantum efficiency of 4 × 10(-6) for devices with a 0.60 μm gap between the gold contacts and 0.5 × 10(-6) for a 5 μm gap-values similar to those reported for M-S-M devices constructed from single-crystalline CdSe nanowires. Kelvin probe force microscopy of 5 μm nc-CdSe nanowire arrays showed pronounced electric fields at the gold electrical contacts, coinciding with the location of strongest EL light emission in these devices. This electric field is implicated in the Poole-Frenkel minority carrier emission and recombination mechanism proposed to account for EL light emission in most of the devices that were investigated.